ManagementGuideService ExamplesAI
Open Source AI Gateway to your AI LLM Providers

Using Octelium provides a complete self-hosted, open source infrastructure to build your AI gateways to both SaaS as well as self-hosted AI LLM models. When used as an AI gateway, Octelium provides the following:

  • A unified scalable infrastructure for all your applications written in any programming language, to securely access any AI LLM API in a secretless way without having to manage and distribute API keys and access tokens (read more about secretless access here).
  • Self-hosted your models via managed containers (read more here). You can see a dedicated example for Ollama here.
  • Centralized identity-based, application-layer (L7) aware ABAC access control on a per-request basis (read more about access control here).
  • Unified, scalable identity management for both HUMAN as well as WORKLOAD Users (read more here).
  • Request/output sanitization and manipulation with Lua scripts and Envoy ExtProc compatible interfaces (read more here) to build you ad-hoc rate limiting, semantic caching, guardrails and DLP logic.
  • OpenTelemetry-native, identity-based, L7 aware visibility and auditing.
  • GitOps-friendly declarative, programmable management (read more here).

AI Gateway

This is a simple example where you can have a Gemini API Service, publicly exposed (read more about the public client-less BeyondCorp mode here). First we need to create a Secret for the CockroachDB database's password as follows:

octeliumctl create secret gemini-api-key

Now we create the Service for the Gemini API as follows:

1
kind: Service
2
metadata:
3
name: gemini
4
spec:
5
mode: HTTP
6
isPublic: true
7
config:
8
upstream:
9
url: https://generativelanguage.googleapis.com
10
http:
11
path:
12
addPrefix: /v1beta/openai
13
auth:
14
bearer:
15
fromSecret: gemini-api-key

You can now apply the creation of the Service as follows (read more here):

octeliumctl apply /PATH/TO/SERVICE.YAML

Octelium enables authorized Users (read more about access control here) to access the Service both via the client-based mode as well as publicly via the client-less BeyondCorp mode (read more here). In this guide, we are going to use the client-less mode to access the Service via the standard OAuth2 client credentials in order for your workloads that can be written in any programming language to access the Service without having to use any special SDKs or have access to external clients All you need is to create an OAUTH2 Credential as illustrated here. Now, here is an example written in Typescript:

1
import OpenAI from "openai";
2
3
import { OAuth2Client } from "@badgateway/oauth2-client";
4
5
async function main() {
6
const oauth2Client = new OAuth2Client({
7
server: "https://<DOMAIN>/",
8
clientId: "spxg-cdyx",
9
clientSecret: "AQpAzNmdEcPIfWYR2l2zLjMJm....",
10
tokenEndpoint: "/oauth2/token",
11
authenticationMethod: "client_secret_post",
12
});
13
14
const oauth2Creds = await oauth2Client.clientCredentials();
15
16
const client = new OpenAI({
17
apiKey: oauth2Creds.accessToken,
18
baseURL: "https://gemini.<DOMAIN>",
19
});
20
21
const chatCompletion = await client.chat.completions.create({
22
messages: [
23
{ role: "user", content: "How do I write a Golang HTTP reverse proxy?" },
24
],
25
model: "gemini-2.0-flash",
26
});
27
28
console.log("Result", chatCompletion);
29
}

You can also route to a certain LLM provider based on the content of the request body (read more about dynamic configuration here), here is an example:

1
kind: Service
2
metadata:
3
name: total-ai
4
spec:
5
mode: HTTP
6
isPublic: true
7
dynamicConfig:
8
configs:
9
- name: gemini
10
upstream:
11
url: https://generativelanguage.googleapis.com
12
http:
13
path:
14
addPrefix: /v1beta/openai
15
auth:
16
bearer:
17
fromSecret: gemini-api-key
18
- name: openai
19
upstream:
20
url: https://api.openai.com
21
http:
22
path:
23
addPrefix: /v1
24
auth:
25
bearer:
26
fromSecret: openai-api-key
27
- name: deepseek
28
upstream:
29
url: https://api.deepseek.com
30
http:
31
path:
32
addPrefix: /v1
33
auth:
34
bearer:
35
fromSecret: deepseek-api-key
36
rules:
37
- condition:
38
match: ctx.request.http.bodyMap.model == "gpt-4o-mini"
39
configName: openai
40
- condition:
41
match: ctx.request.http.bodyMap.model == "deepseek-chat"
42
configName: deepseek
43
- condition:
44
matchAny: true
45
configName: gemini

For more complex and dynamic routing rules (e.g. message-based routing), you can use the full power of Open Policy Agent (OPA) (read more here).

When it comes to access control, Octelium provides a rich layer-7 aware, identity-based, context-aware ABAC access control on a per-request basis where you can control access based on the HTTP request's path, method, and even serialized JSON using policy-as-code with CEL and Open Policy Agent (OPA) (You can read more in detail about Policies and access control here). Here is a generic example:

1
kind: Service
2
metadata:
3
name: my-api
4
spec:
5
mode: HTTP
6
config:
7
upstream:
8
url: https://api.example.com
9
authorization:
10
inlinePolicies:
11
- spec:
12
rules:
13
- effect: ALLOW
14
condition:
15
all:
16
of:
17
- match: ctx.user.spec.groups.hasAll("dev", "ops")
18
- match: ctx.request.http.bodyMap.messages.size() < 4
19
- match: ctx.request.http.bodyMap.model in ["gpt-3.5-turbo", "gpt-4o-mini"]
20
- match: ctx.request.http.bodyMap.temperature < 0.7

This was just a very simple example of access control for an OpenAI-compliant LLM API. Furthermore, you can use Open Policy Agent (OPA) to create much more complex access control decisions.

You can also use Octelium's plugins, currently Lua scripts and Envoy's ExtProc, to sanitize and manipulate your request and responses (read more about HTTP plugins here). Here is an example:

1
kind: Service
2
metadata:
3
name: safe-gemini
4
spec:
5
mode: HTTP
6
isPublic: true
7
config:
8
upstream:
9
url: https://generativelanguage.googleapis.com
10
http:
11
path:
12
addPrefix: /v1beta/openai
13
plugins:
14
- name: main
15
lua:
16
inline: |
17
function onRequest(ctx)
18
local body = json.decode(octelium.req.getRequestBody())
19
20
if body.temperature > 0.7 then
21
body.temperature = 0.7
22
end
23
24
if body.model == "gemini-2.5-pro" then
25
body.model = "gemini-2.5-flash"
26
end
27
28
if #body.messages > 4 then
29
octelium.req.exit(400)
30
return
31
end
32
33
body.messages[0].role = "system"
34
body.messages[0].content = "You are a helpful assistant that provides concise answers"
35
36
for idx, message in ipairs(body.messages) do
37
if strings.lenUnicode(message.content) > 500 then
38
octelium.req.exit(400)
39
return
40
end
41
end
42
43
if body.temperature > 0.4 then
44
local c = http.client()
45
c:setBaseURL("http://guardrail-api.default.svc")
46
local req = c:request()
47
req:setBody(json.encode(body))
48
local resp, err = req:post("/v1/check")
49
if err then
50
octelium.req.exit(500)
51
return
52
end
53
54
if resp:code() == 200 then
55
local apiResp = json.decode(resp:body())
56
if not apiResp.isAllowed then
57
octelium.req.exit(400)
58
return
59
end
60
end
61
end
62
63
if strings.contains(strings.toLower(body.messages[1].content), "paris") then
64
local c = http.client()
65
c:setBaseURL("http://semantic-caching.default.svc")
66
local req = c:request()
67
req:setBody(json.encode(body))
68
local resp, err = req:post("/v1/get")
69
if err then
70
octelium.req.exit(500)
71
return
72
end
73
74
if resp:code() == 200 then
75
local apiResp = json.decode(resp:body())
76
octelium.req.setResponseBody(json.encode(apiResp.response))
77
octelium.req.exit(200)
78
return
79
end
80
end
81
82
octelium.req.setRequestBody(json.encode(body))
83
end

Octelium also provides OpenTelemetry-ready, application-layer L7 aware visibility and access logging in real time (see an example for HTTP here). You can read more about visibility here.

Here are a few more features that you might be interested in:

  • Routing not just by request paths, but also by header keys and values, request body content including JSON (read more here).
  • Request/response header manipulation (read more here).
  • Cross-Origin Resource Sharing (CORS) (read more here).
  • Secret-less access to upstreams and injecting bearer, basic, or custom authentication header credentials (read more here).
  • Application layer-aware ABAC access control via policy-as-code using CEL and Open Policy Agent (read more here).
  • OpenTelemetry-ready, application-layer L7 aware auditing and visibility (read more here).
© 2025 octelium.comOctelium Labs, LLCAll rights reserved
Octelium and Octelium logo are trademarks of Octelium Labs, LLC.
WireGuard is a registered trademark of Jason A. Donenfeld